
1. Линейная алгебра 
 

1.1. Действия с матрицами. 

Выполнить действия: 
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Решение. 

 

а) по правилу умножения матрицы на число и сложения матриц получаем 
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б) используем правило умножения матриц 
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1.2. Вычисление определителей.  

Вычислить определитель 
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  двумя способами:  

а) по правилу «треугольников»; б) разложением по строке. 

 

Решение. 

 

а) по правилу «треугольников» 
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б) разложением по строке 

так как во второй строке есть ноль, то целесообразно разложить именно по второй строке 
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1.3. Системы линейных уравнений. 
Решить систему уравнений тремя способами: а) по формулам Крамера; б) методом Гаусса; 

в) с помощью вычисления обратной матрицы, записав систему в матричном виде 
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Решение. 

 

а) ) по формулам Крамера; 

 

Найдем основной определитель системы 
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Определитель не равен нулю, значит, система совместима 

 

Находим определители, составленные путем замены столбика коэффициентов 

соответствующей переменной свободным столбиком  
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Тогда 
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б) методом Гаусса; 
 

 

Выписываем расширенную матрицу системы и преобразовываем ее к треугольному виду 

(прямой ход) 
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Все диагональные элементы матрицы не нулевые, т.е., ранг матрицы равен ее порядку 3, 

и, значит, система совместима 

 

Обратный ход: начиная с третьей строки, последовательно находим  
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в) с помощью обратной матрицы. 

 

Запишем систему в матричном виде 

BAX   
Тогда решение запишется 

BAX 1  
 

Найдем обратную матрицу. Для этого вычисляем дополнительные миноры, при этом их  

знак равен 
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Тогда обратная матрица примет вид 
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В результате 
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Все три метода дали одинаковый результат. 

 

 

 

 

 

2. Аналитическая геометрия 
 

2.1 Прямая на плоскости.  

Построить треугольник, вершины которого находятся в точках  6;2A ,  5;1 B , 

 5;1C  и найти: 

1) координаты точки пересечения медиан; 

2) длину и уравнение высоты, опущенной из вершины А; 

3) площадь треугольника; 

4) систему неравенств, задающих внутренность треугольника АВС. 

 

Решение. 

 

Построим чертеж 



 
Рис 1. 

 

 

1) координаты точки пересечения медиан; 

Медианы по определению делят стороны пополам. Следовательно, найдем середины 

сторон.  
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Теперь  запишем уравнения медиан и решим полученную систему. 
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Находим точку пересечения медиан 
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2) длину и уравнение высоты, опущенной из вершины А; 

Высота по определению перпендикулярна к стороне. По этому запишем уравнение 

стороны ВС 
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Тогда уравнение высоты можно записать как уравнение прямой, проходящей через точку 

А в указанном направлении. Направление задается нормальным вектором прямой ВС, т.е.  

)1,5(05: 


nyxBC  

 

02853052
1

6

5

2
: 











yxyx

yx

n

yy

n

xx
AH

y

A

x

A  

Длину высоты определим как расстояние от точки А до прямой ВС 
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3) площадь треугольника; 

вычислим длину стороны  ВС 
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Тогда площадь треугольника  
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4) запишем систему неравенств, задающих внутренность треугольника АВС. 

Для этого сначала запишем уравнения сторон 
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Тогда получаем систему неравенств, задающих внутренность треугольника АВС 
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2.2 Прямая и плоскость в пространстве. 

Дана треугольная пирамида с вершинами в точках  6;5;1S ,  1;5;2 A ,  5;2;5 B , 

 6;1;5 C ,. Найти: 

a) уравнение плоскости, проходящей через точки А, В и С; 

б) величину угла между ребром SC и гранью АВС; 

в) площадь грани АВС; 

г) уравнение высоты, опущенной из вершины S на грань АВС, и ее длину; 

д)объем пирамиды SАВС. 

 

Решение.  

 

a) уравнение плоскости, проходящей через точки А, В и С 
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б) величину угла между ребром SC и гранью АВС; 

Синус угла между прямой и плоскостью найдем по формуле 
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),,( nml  направляющий вектор прямой SC 

),,( CBA  нормальный вектор плоскости АВС 

 

Запишем уравнение прямой SC, как прямой, проходящей через две точки 
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Тогда 
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А из уравнения плоскости АВС 
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Вычисляем угол 
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в) площадь грани АВС; 

площадь грани АВС  найдем как половину площади параллелограмма, построенного на 

векторах АВ и АС, т.е., как половина модуля векторного произведения этих векторов 

 

Координаты векторов 
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Находим векторное произведение 
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Тогда искомая площадь 
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г) уравнение высоты, опущенной из вершины S на грань АВС, и ее длину; 

 Уравнения высоты, опущенной из вершины  S на грань АВС , запишем как уравнение 

прямой, проходящей через заданную точку в заданном направлении. Так как высота 

перпендикулярна плоскости АВС по определению, то за направляющий вектор прямой 

можно взять нормальный вектор плоскости.  

Из вида уравнения плоскости  
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получаем нормальный вектор 
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Тогда искомое уравнение высоты можно записать в виде 
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Длину высоты вычислим как расстояние от точки до плоскости 
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д)объем пирамиды SАВС. 

Объем пирамиды найдем как шестую часть произведения векторов, на которых она 

построена.  
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Найдем координаты вектора 
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Вычислим произведение 
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Следовательно    
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