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Разделили левую и правую часть уравнения на х.  Тогда уравнение запишется  в виде
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Делаем замену
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Подставим эти выражения в уравнение
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Получили уравнение с разделяющимися переменными. Разделяем переменные
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Интегрируем
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Возвращаясь к замене, получаем искомое решение


[image: image7.wmf])
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2. 
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Это линейное уравнение первого порядка. Следовательно, решение ищем в виде произведения двух функций
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Подставим эти выражения в уравнение
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Для определения функции 
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Это уравнение с разделяющимися переменными. Находим
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Подставим найденное значение в уравнение, учитывая, что 
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Аналогично находим
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Вычислим интеграл справа отдельно, делая замену и применяя метод интегрирования по частям
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Т.о., 
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В результате искомое решение примет вид


[image: image19.wmf])

1

sin

2

(

)

(

)

(

sin

sin

x

x

e

x

C

e

y

x

v

x

u

y

+

-

=

Þ

=


Или
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3. 
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Это уравнение, допускающее понижение порядка.

Делаем замену
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Тогда получим линейное уравнение первого порядка
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Следовательно, решение ищем в виде произведения двух функций
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Подставим эти выражения в уравнение
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Для определения функции 
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Это уравнение с разделяющимися переменными. Находим
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Подставим найденное значение в уравнение, учитывая, что 
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Аналогично находим
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Т.о.,
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Возвращаемся к замене
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Отсюда, интегрируя по частям, получаем искомое решение исходного уравнения
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4. 
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Это линейное уравнение с постоянными коэффициентами.

Решение будем искать в виде суммы общего решение соответствующего однородного уравнения и частного решения неоднородного уравнения
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Найдем корни характеристического уравнения
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Корни действительные, разные, тогда общее решение однородного уравнения запишется в виде
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Находим частное решение неоднородного уравнения
Так как правая часть уравнения имеет специальный вид, то допустимо частное решение неоднородного уравнения искать в виде правой части.
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Найдем производные, подставим в уравнение и приравнивая коэффициенты при одинаковых функциях, определим их
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Т.о., частное решение неоднородного уравнения
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Следовательно, искомое решение
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5. 
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Это линейное уравнение с постоянными коэффициентами.

Решение будем искать в виде суммы общего решение соответствующего однородного уравнения и частного решения неоднородного уравнения
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Найдем корни характеристического уравнения


[image: image45.wmf]2
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Корни действительные, разные, тогда общее решение однородного уравнения запишется в виде
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Находим частное решение неоднородного уравнения
Так как правая часть уравнения имеет специальный вид, то допустимо частное решение неоднородного уравнения искать в виде правой части.
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Найдем производные, подставим в уравнение и приравнивая коэффициенты при одинаковых функциях, определим их
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Т.о., частное решение неоднородного уравнения
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Следовательно, искомое решение
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6. 
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Уравнение не содержит переменную х в явном виде. По этому делаем замену
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Отсюда получаем
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í

ì

=

-

¢

+

=

0

)

1

(

2

0

z

p

p

p


Из второго уравнения
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Т.о.,  получим общие интегралы исходного уравнения
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Из начальных условий определяем
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Следовательно, искомое частное решение уравнения можно записать в виде
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7. 
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Это линейное уравнение с постоянными коэффициентами.

Решение будем искать в виде суммы общего решение соответствующего однородного уравнения и частного решения неоднородного уравнения
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Найдем корни характеристического уравнения
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Корни действительные, разные, тогда общее решение однородного уравнения запишется в виде
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Находим частное решение неоднородного уравнения
Так как правая часть уравнения имеет специальный вид, то допустимо частное решение неоднородного уравнения искать в виде правой части.
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Найдем производные, подставим в уравнение и приравнивая коэффициенты при одинаковых функциях, определим их
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Т.о., частное решение неоднородного уравнения
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Следовательно, искомое решение
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8. 
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Это линейное уравнение с постоянными коэффициентами.

Решение будем искать в виде суммы общего решение соответствующего однородного уравнения и частного решения неоднородного уравнения


[image: image68.wmf]y

y

y

~

+

=


Найдем корни характеристического уравнения
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Корни комплексные, тогда общее решение однородного уравнения запишется в виде
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Находим частное решение неоднородного уравнения методом вариации произвольной постоянной в виде
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Для этого решим систему уравнений
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Отсюда получаем
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Из второго уравнения системы
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Отсюда
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Т.о., получаем частное решение неоднородного уравнения
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В итоге искомое решение исходного уравнения
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Или
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