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y
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Разделили левую и правую часть уравнения на х.  Тогда уравнение запишется  в виде 
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Делаем замену 
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Подставим эти выражения в уравнение 
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Получили уравнение с разделяющимися переменными. Разделяем переменные 
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Возвращаясь к замене, получаем искомое решение 
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2. xxyy 2sincos   

 

Это линейное уравнение первого порядка. Следовательно, решение ищем в виде 

произведения двух функций 
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Подставим эти выражения в уравнение 
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Для определения функции )(xv  можно взять 
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Это уравнение с разделяющимися переменными. Находим 
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Подставим найденное значение в уравнение, учитывая, что 0)cos(  xvv . Получим 
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Аналогично находим 
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Вычислим интеграл справа отдельно, делая замену и применяя метод интегрирования по 

частям 
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Т.о.,  
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В результате искомое решение примет вид 

 

)
1sin

2()()(
sin

sin

x

x

e

x
Ceyxvxuy


  

 

Или 
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Это уравнение, допускающее понижение порядка. 

Делаем замену 

 

pypy   

 

Тогда получим линейное уравнение первого порядка 
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Следовательно, решение ищем в виде произведения двух функций 

 

vuvuyxvxuy  )()(  

 

Подставим эти выражения в уравнение 
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Для определения функции )(xv  можно взять 
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Это уравнение с разделяющимися переменными. Находим 
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Подставим найденное значение в уравнение, учитывая, что 0)
1

(  v
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v . Получим 
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Аналогично находим 
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Т.о., 

)( 1Cexp x   

Возвращаемся к замене 
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Отсюда, интегрируя по частям, получаем искомое решение исходного уравнения 
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4. xeyyy 8387   

 

Это линейное уравнение с постоянными коэффициентами. 

Решение будем искать в виде суммы общего решение соответствующего однородного 

уравнения и частного решения неоднородного уравнения 

 

yyy ~  

 

Найдем корни характеристического уравнения 
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2  kkkkkk  

 

Корни действительные, разные, тогда общее решение однородного уравнения запишется в 

виде 

 
xx eCeCy 8
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Находим частное решение неоднородного уравнения 

Так как правая часть уравнения имеет специальный вид, то допустимо частное решение 

неоднородного уравнения искать в виде правой части. 

 
xAxey 8~   

 

Найдем производные, подставим в уравнение и приравнивая коэффициенты при 

одинаковых функциях, определим их 
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Т.о., частное решение неоднородного уравнения 
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Следовательно, искомое решение 
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5. xyyy 3sin23   

 



Это линейное уравнение с постоянными коэффициентами. 

Решение будем искать в виде суммы общего решение соответствующего однородного 

уравнения и частного решения неоднородного уравнения 

 

yyy ~  

 

Найдем корни характеристического уравнения 
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2  kkkkkk  

 

Корни действительные, разные, тогда общее решение однородного уравнения запишется в 

виде 

 
xx eCeCy 2

21   

 

Находим частное решение неоднородного уравнения 

Так как правая часть уравнения имеет специальный вид, то допустимо частное решение 

неоднородного уравнения искать в виде правой части. 

 

xBxAy 3cos3sin~   

 

Найдем производные, подставим в уравнение и приравнивая коэффициенты при 

одинаковых функциях, определим их 
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Т.о., частное решение неоднородного уравнения 
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Следовательно, искомое решение 
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6. 1)0(,2)0(,0)1('2 2  zzzzz  

 

Уравнение не содержит переменную х в явном виде. По этому делаем замену 
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Отсюда получаем 
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Из второго уравнения 
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Т.о.,  получим общие интегралы исходного уравнения 
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Из начальных условий определяем 
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Следовательно, искомое частное решение уравнения можно записать в виде 
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7. 134 2  xyy  

 

Это линейное уравнение с постоянными коэффициентами. 

Решение будем искать в виде суммы общего решение соответствующего однородного 

уравнения и частного решения неоднородного уравнения 
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Найдем корни характеристического уравнения 
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Корни действительные, разные, тогда общее решение однородного уравнения запишется в 

виде 

 
xeCCy 4
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Находим частное решение неоднородного уравнения 

Так как правая часть уравнения имеет специальный вид, то допустимо частное решение 

неоднородного уравнения искать в виде правой части. 

 

)(~ 2 CBxAxxy   

 

Найдем производные, подставим в уравнение и приравнивая коэффициенты при 

одинаковых функциях, определим их 
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Т.о., частное решение неоднородного уравнения 
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Следовательно, искомое решение 
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Это линейное уравнение с постоянными коэффициентами. 

Решение будем искать в виде суммы общего решение соответствующего однородного 

уравнения и частного решения неоднородного уравнения 
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Найдем корни характеристического уравнения 
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Корни комплексные, тогда общее решение однородного уравнения запишется в виде 
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Находим частное решение неоднородного уравнения методом вариации произвольной 

постоянной в виде 
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Для этого решим систему уравнений 
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Отсюда получаем 
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Из второго уравнения системы 
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Отсюда 
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Т.о., получаем частное решение неоднородного уравнения 
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В итоге искомое решение исходного уравнения 
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